

Git – Without the complexity

What is Git?
Git is a free and open-source distributed version control system that manages and tracks changes to your code locally on your computer.

This cheat sheet features the most important and commonly used Git commands.

Installation
You can download the latest Git version specific to your environment from the links provided below.

• Download (windows): https://git-scm.com/download/win

• Download (macOS): https://git-scm.com/download/mac

• Download (Linux/Unix): https://git-scm.com/download/linux

You can confirm a successful Git installation by running a command in the Command Prompt

git –-version

Setup Global Configuration
In Git, you can set global settings like your full name and email address. These defaults are used as the author information for all your

commits.

git config --global user.name “Ervis Trupja”
git config --global user.email contact@dotnethow.net

https://git-scm.com/download/win
https://git-scm.com/download/mac
https://git-scm.com/download/linux
mailto:contact@dotnethow.net

Repositories

A repository is a storage location where Git tracks and manages versions of files for a project. It contains the entire history of changes

made to the files, allowing for collaboration, version control, and easy navigation through different revisions.

When working with Git it is important to know that you can have local and remote repositories. The first step to working with git is to either

use an existing repository from Github (platform and cloud-based service for software development and version control using Git) or you

can start your own git repository.

To set up a new Git repository in the current directory, use this command:

git init

To clone an existing Git repository, simply run the command:

git clone /path/to/repository

To clone a Git repository from a cloud service like GitHub or Bitbucket, use the command:

git clone [remoteUrl]

If I have a repository in my GitHub account named “git-without-the-complexity”, to clone it I would use the command:

git clone https://github.com/etrupja/git-without-the-complexity

Git Architecture
Your local Git repository consists of three "trees" maintained by git.

• WORKING DIRECTORY - Your current workspace where you edit files. Not tracked by Git until changes are staged.

• STAGING AREA (INDEX) - A buffer zone where changes are staged before being committed. You add changes here with git add.

• HEAD - Contains the history of all committed changes. When you git commit, the changes from the Staging Area are stored here.

https://github.com/etrupja/git-without-the-complexity

Adding Code to Repository
In Git, after making changes to one or more files in your working directory, you need to stage these changes by adding them to the Index

before committing them to the repository

Figure 1 – Git Architecture

Figure 2 – Add changed to Index with git add

To stage changes for a specific file

git add <filename>

To stage changes for all files and directories in the current directory, excluding hidden ones and subdirectories.

git add *

To stage changes for all files and directories in the current directory, including hidden ones and subdirectories.

git add .

Keep in mind that `git add` doesn't permanently save changes in the repository. It just stages them for `git commit`, which then stores

them in the repository head.

To commit changes to the HEAD, use this command:

git commit -m "Your commit message"

Now, the changes are committed to the head, but they are not in the remote repository yet (it can be a Github repository etc.)

Figure 3 - Adding changes to HEAD with git commit

Pushing Changes to a Repository Branch
Your changes are now in the HEAD of your local working copy. To push these changes to a branch use the command:

git push origin [branch_name]

So, if you want to push changes to the 'master' branch, use the command:

git push origin master

If you've created a local repository and want to sync it with a remote repository, you need to link them first. You can do this using the

command:

git remote add origin <server>

Branching
The default branch in a Git repository is the master branch. But it is possible to create other branches (copies) from that branch so you can

isolate your work from the rest of the team, or simply isolate the features you are developing from each other.

Let’s say you want to add a new feature to your application. In that case you can create a new branch from the master branch named

feature_branch.

Figure 4 – Creating feature_branch from master branch

After you are done with your changes, you can merge your feature_branch changes back to the master branch. So, moving forward

whoever creates another branch from master, will have the latest code, including yours.

To create a new branch, you can use this command:

git checkout -b feature_branch

To switch back to master branch or to any other branch, you can use:

git checkout master

You can see that if you use the -b flag, a new branch is created, if not then you simply switch to the branch. After you work is done in the

feature_branch, you can remove it from git repository using a simple command:

git branch -d feature_branch

It is very important to know that you can create branches locally, but for others to access them, you need to publish them, so your team

members can access them. To publish/push a branch to your remote git repository you can use this command:

git push origin <branch>

Update & Merge
To download updates from a remote repository into your local repository without merging changes into your current working branch, use

the command:

git fetch

To fetch the latest changes from a remote repository and immediately merge them into your local branch, use the command:

git pull

This updates your current working environment to match the latest commits in the remote repository.

If you want to merge another branch into your active branch, you can use this command:

git merge <branch>

So, lets say you checkout and are in the master branch, and to master branch you want to merge the feature_branch changes. In that case,

you can use this command:

git merge feature_branch

Figure 5 – Merging feature_branch into master branch

When git tries to merge changes, it might not always success, resulting in conflicts. In this case you need to manually resolve the conflicts

and decide which code you want to keep from which branch.

This process is called resolving conflicts. You can also check the differences between different branches before you merge the changes.

For that you can use this command:

git diff <source_branch> <target_branch>

Example:

git diff master feature_branch

Notes
Above we have mentioned some of the commonly used git command, but of course there is more to git. Other than that a lot of GUI tools

have been created to make our job easier to work with git.

https://desktop.github.com/ is my favorite tool and I do suggest you go and check it out.

Thank you!

I hope that you foind this file helpful.

I'm Ervis Trupja, a full-stack .NET web developer with a background in mathematics and teaching. Visit my GitHub for my projects and my

YouTube for programming tutorials.

I also offer courses on:

• Udemy: https://www.udemy.com/user/ervis-trupja/

• LinkedIn Learning: https://www.linkedin.com/learning/instructors/ervis-trupja

• Pluralsight: https://www.pluralsight.com/authors/ervis-trupja

Excited to share my tech journey with you!

https://github.com/etrupja
https://youtube.com/c/dotnethow
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbEh0dlBSVk4tQWdsUE9fX1FqQTJnbmo2RmpaZ3xBQ3Jtc0trc1VLU21YWFI1UmFOZVBxWEM3V1JDdFZRLTBVVkV4SEY2WDlFNmU3VFVSRzZTNDNnT0E3d2NtYXlFYm5vMmdfRGlYNTg2MzF6Q3ZCZDVrTndVWlQ3YjhXTFI1MlU3LTlZTXVXa0lOZHVJRlVBTy1OMA&q=https%3A%2F%2Fwww.udemy.com%2Fuser%2Fervis-trupja%2F&v=fRV53m7kMoQ
https://www.pluralsight.com/authors/ervis-trupja

